《低速柴油机动力学试验台设计(毕业论文).doc》由会员分享,可在线阅读,更多相关《低速柴油机动力学试验台设计(毕业论文).doc(39页珍藏版)》请在知学网上搜索。
1、第一章 绪论1.1 研究背景1.1.1 大功率低速船用柴油机曲轴柴油机是目前世界上船舶使用最为普遍的动力装置。根据其曲轴转速可分为低速机(转速为75-300rmin)、中速机(转速为3001000rmin)和高速机(转速为1000-2100rmin)。其中,大功率低速柴油机由于其单机功率大、经济性好、可靠性高等特点,在大中型民用船舶上得到普遍应用。据统计,在一般大中型民用船舶中,有90使用大功率低速柴油机作为主推进装置。同时,柴油机主机是一般民用船舶中价值最高的配套设备,其价格占到了船价的10左右。而曲轴作为柴油机的关键运动件之一。其动力学行为不仅在很大程度上决定着柴油机的工作可靠性,而且对柴
2、油机的振动和噪声也有着重要的影响。大功率低速船用柴油机是船舶的心脏,曲轴是柴油机最主要的关键附件。世界先进造船国家日本、韩国等在大力发展造船能力的同时都相应地努力发展大功率低速船用柴油机及主要关键附件曲轴的制造能力。为实现我国在2015年成为世界第一造船大国的目标,近年来国内造船业有了飞快的发展。柴油机性能不仅与曲轴轴承系统中的摩擦学行为与动力学行为有关,而且与它们之间的耦合作用密切相关。大功率低速半组合式船用柴油机曲轴转子轴承系统动力学研究将有助于人们对曲轴转子一轴承系统有更完善的认识、有助于建立多缸柴油机各设计参数之间更加准确的相互依赖关系,为柴油机性能的进一步提高提供理论上的指导。1.1
3、.2 曲轴关键问题研究为了提高曲轴的生产率,必须提高曲轴精加工时的转速,以提高切削速度。但是,当曲轴转子高速运行时,必然出现质量偏心引起的振动问题。研究不同转速下大型船用柴油机曲轴转子的动力学特点,研究切削力大小和位置变化时,曲轴转子的振动规律,就可以为曲轴精加工时切削用量的选择提供理论指导;另一方面,对曲轴转子系统动力学性能的研究,对曲轴的使用、监测、维修等工作也具有实用价值。曲轴是柴油机、内燃机、蒸汽机等发动机中最重要的部件之一。活塞的往复运动通过连杆转变为曲轴的旋转运动,柴油机、内燃机、蒸汽机的功率通过曲轴输出,并直接或间接地驱动配气系统、喷油泵、机油泵、水泵等部件。随着现代动力装备向大
4、功率、高效率、高可靠性、低噪音等方向的发展,对曲轴系统动力学性能的要求越来越高。由于曲轴属于典型的非对称结构零件,具有各向异性及各向耦合的特点。因此,曲柄的偏心质量不仅能激起弯曲振动,而且也可以激起扭转振动、轴向振动及三者的耦合振动。大型船用柴油机曲轴又具有其自身的特点。在机械加工过程中,特别是精加工过程中,不能采用高速加工方法,否则,将使曲轴转速接近或处于共振区,产生大幅振动导致加工质最下降。1.2 国内外发展现状近年来,我国船舶工业飞速发展,中国已经跻身于世界造船国一级梯队。但船用配套设备一直是我国船舶业的软肋,相比日本、韩国85以上的船用配套设备自给率,我国作为世界第三大造船国,船用配套
5、设备80都依赖进口,大型船用配套设备国内供货问题仍未解决。而低速柴油机的核心部件曲轴的紧缺,更是严重制约了我国船舶业的发展。曲轴作为船用发动机的关键部件,被视为船用柴油机的“心脏”,对船舶的安全起着至关重要的作用。由于其重量大、加工精度要求高、制造技术难度高,因而业内常用“是否具备曲轴制造能力,从某种程度上代表了一个国家的造船工业水平”,来说明船用曲轴制造技术之于造船工业的重要性。目前日本、韩国、捷克、西班牙等少数几个具备制造大型船用半组合式曲轴能力的国家高度垄断着国际上大型船用曲轴市场。由于国内不具备大型船用柴油发动机曲轴生产经验,造船所需的船用大功率低速柴油机曲轴一直依赖进口。“船等机、机
6、等轴”的现状成了制约我国船舶工业持续发展的瓶颈。为改变我国造船业“船等机、机等轴”的现状,2001年,在国家领导人的有关指示下,国家发改委批准上马船用半组合曲轴国产化项目,并安排了部分国债资金予以支持。2002年5月,上海电气(集团)总公司、沪东中华造船(集团)有限公司、中国船舶重工集团公司和上海工业投资公司共同投资组建上海船用曲轴有限公司,投资1.86亿元开展船用半组合曲轴的科技攻关。2005年1月,中国自己制造的第一根船用半组合曲轴在上海船用曲轴有限公司厂房下线,这根7.5米长、约60吨重的船用柴油机半组合曲轴实现了我国在该领域零的突破。中国船舶工业协会2006年3月份公布的2005年全国
7、船舶工业经济运行报告中指出,我国船舶工业重点配套能力有所提高,研制生产取得突破。船用大型低速柴油机曲轴实现了完全自主生产,已获得65根订单。尽管如此,但整个产业的形势依然严峻。专家称,中国的造船技术与国外先进水平相比,至少相差10年,差距在于核心设备自给还跟不上。大型船用曲轴在使用和加工过程中,必须支承在滑动轴承上,形成曲轴转子滑动轴承系统。当曲轴旋转时,不平衡质量及其他激励导致曲轴振动,同时滑动轴承的油膜力与轴颈发生流固耦合作用,使该系统的振动规律不同于其他系统的振动规律。1.3 经济效益与社会效益大功率低速船用柴油机是船舶的心脏,曲轴是柴油机最主要的关键附件。船用曲轴是广泛用于民用船舶、国
8、防船舶等领域的关键装备。世界先进造船国家日本、韩国等在大力发展造船能力的同时都相应地努力发展大功率低速船用柴油机及主要关键附件曲轴的制造能力,为实现我国在2015年成为世界第一造船大国的目标,近年来国内造船业有了飞快的发展。但是,随着原材料成本上升以及其他国家自身需求量的猛增,每根船用曲轴价格目前己达50万美元以上。该关键部件自造能力的缺失一度制约着我国船舶工业的发展,也让中国在荣获“世界第三造船大国“之名的同时付出了高昂的代价。有统计资料显示,1978-1997年,中国在进口曲轴上花费高达9000多万美元。而近年来。由于曲轴价格持续飞涨,以及中国造船业对曲轴需求量的增加,每年进口曲轴的费用已
9、经高达40005000万美元。近几年来,半组合曲轴供求矛盾更为突出,价格逐年提高并且交货期也经常得不到保证。因此,迅速建立中国自己的曲轴生产基地,实现船用大功率低速柴油机曲轴国产化已经成为我国经济建设中的一项战略任务。虽然,大型半组合曲轴国产化标志着我国曲轴制造能力达到了真正意义的自主化,实现了具有自主知识产权的船用曲轴制造能力,打破了国外的技术垄断,并具备了批量生产的能力,但是,要赶上、超过世界先进水平,还有很长的路要走,还需要在各个方面进行技术创新。1.4 本课题的研究内容根据大功率低速船用柴油机的特点,设计曲轴转子滑动轴承系统的动力学试验台。在理论分析的基础上,研究设计该系统的动力学试验
10、台,用于研究曲轴在机械加工过程和使用过程中的振动问题,以提高曲轴的加工精度,减少柴油机的振动,提高其工作效率和寿命,减少对环境的影响。试验台中最重要的结构即为活塞连杆机构,下面将着重对此机构进行详细的设计分析。第二章 曲柄连杆机构受力分析曲柄连杆机构是发动机传递运动和动力的机构,通过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。随着发动机强化指标的不断提高,机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关
11、键性问题。通过设计,确定本次试验台所需曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以满足试验的需要。在传统的设计模式中,为了满足设计的需要须进行大量的数值计算,同时为了满足产品的使用性能,须进行强度、刚度、稳定性及可靠性等方面的设计和校核计算,同时要满足校核计算,还需要对曲柄连杆机构进行动力学分析。 研究曲柄连杆机构的受力,关键在于分析曲柄连杆机构中各种力的作用情况,并根据这些力对曲柄连杆机构的主要零件进行强度、刚度、磨损等方面的分析、计算和设计,以便达到发动机输出转矩及转速的要求。2.1 曲柄连杆机构的类型及方案选择内燃机中采用曲柄连杆机构的
12、型式很多,按运动学观点可分为三类,即:中心曲柄连杆机构、偏心曲柄连杆机构和主副连杆式曲柄连杆机构。1、中心曲柄连杆机构其特点是气缸中心线通过曲轴的旋转中心,并垂直于曲柄的回转轴线。这种型式的曲柄连杆机构在内燃机中应用最为广泛。一般的单列式内燃机,采用并列连杆与叉形连杆的V形内燃机,以及对置式活塞内燃机的曲柄连杆机构都属于这一类。2、偏心曲柄连杆机构其特点是气缸中心线垂直于曲轴的回转中心线,但不通过曲轴的回转中心,气缸中心线距离曲轴的回转轴线具有一偏移量e。这种曲柄连杆机构可以减小膨胀行程中活塞与气缸壁间的最大侧压力,使活塞在膨胀行程与压缩行程时作用在气缸壁两侧的侧压力大小比较均匀。 3、主副连
13、杆式曲柄连杆机构其特点是内燃机的一列气缸用主连杆,其它各列气缸则用副连杆,这些连杆的下端不是直接接在曲柄销上,而是通过副连杆销装在主连杆的大头上,形成了“关节式”运动,所以这种机构有时也称为“关节曲柄连杆机构”。在关节曲柄连杆机构中,一个曲柄可以同时带动几套副连杆和活塞,这种结构可使内燃机长度缩短,结构紧凑,广泛的应用于大功率的坦克和机车用V形内燃机。经过比较,本试验台所选择的型式为中心曲柄连杆机构。2.2 曲柄连杆机构运动学中心曲柄连杆机构简图如图2.1所示,图2.1中气缸中心线通过曲轴中心O,OB为曲柄,AB为连杆,B为曲柄销中心,A为连杆小头孔中心或活塞销中心。当曲柄按等角速度旋转时,曲
14、柄OB上任意点都以O点为圆心做等速旋转运动,活塞A点沿气缸中心线做往复运动,连杆AB则做复合的平面运动,其大头B点与曲柄一端相连,做等速的旋转运动,而连杆小头与活塞相连,做往复运动。在实际分析中,为使问题简单化,一般将连杆简化为分别集中于连杆大头和小头的两个集中质量,认为它们分别做旋转和往复运动,这样就不需要对连杆的运动规律进行单独研究。图2.1 曲柄连杆机构运动简图活塞做往复运动时,其速度和加速度是变化的。它的速度和加速度的数值以及变化规律对曲柄连杆机构以及发动机整体工作有很大影响,因此,研究曲柄连杆机构运动规律的主要任务就是研究活塞的运动规律。1. 活塞位移假设在某一时刻,曲柄转角为,并按
15、顺时针方向旋转,连杆轴线在其运动平面内偏离气缸轴线的角度为,如图2.1所示。当=时,活塞销中心A在最上面的位置A1,此位置称为上止点。当=180时,A点在最下面的位置A2,此位置称为下止点。此时活塞的位移x为:x=(r+) (2.1)式中:连杆比。式(2.1)可进一步简化,由图2.1可以看出:即 又由于 (2.2)将式(2.2)带入式(2.1)得: (2.3)式(2.3)是计算活塞位移x的精确公式,为便于计算,可将式(2.3)中的根号按牛顿二项式定理展开,得:考虑到 13,其二次方以上的数值很小,可以忽略不计。只保留前两项,则 (2.4)将式(2.4)带入式(2.3)得 (2.5)2. 活塞的速度 将活塞位移公式(2.1)对时间t进行微分,即可求得活塞速度的精确值为 (2.6)将式(2.5)对时间微分,便可求得活塞速度得近似公式为: (2.7)从式(2.7)可以看出,活塞速度可视为由与两部分简谐运动所组成。当或时,活塞速度为零,活塞在这两点改变运动方向。当时,此时活塞得速度等于曲柄销中心的圆周速度。3. 活塞的加速度将式(2.6)对时间微分,可求得活塞加速