玻璃清洗机器人吸附机构设计含三维SW及CAD图纸.zip
毕业论文玻璃清洗机器人吸附机构设计系部名称: 专业班级: 学生姓名: 指导教师: 职 称: 二一九年六月The Graduation Design Design of Adsorption Mechanism for Glass Cleaning Robot Candidate: Specialty: Class: Supervisor: Shenyang institute of technology2019-06I摘 要 高楼玻璃幕墙清洗机器人是特种机器人的一个分支。它是基于壁面移动机器人技术,并针对具体的作业对象,具有明确功能的实用机器人,其工作在垂直危险的玻璃壁面,能够克服重力的作用,携带清洗设备,是面向现代高层建筑玻璃外墙表面保洁、清洗服务的极限作业机器人。 论文首先对机器人总体方案进行介绍,提出了分层次规划的体系结构。在此基础上,对机器人总体结构进行了设计分析,并应用有关计算理论和计算软件进行了主要参数设计和关键部件的结构设计,讨论了机器人的作业路径,运动控制规划及吸附机构的设计,最后,应用 UG 三维软件针对所设计的机器人建立了三维实体模型。 关键词:玻璃幕墙清洗;机器人;运动分析IIABSTRACTGlass-wall cleaning robot is one of robot for limited operation,which can walk on Vertical glass-wall with washing devices.It is a robot with specific applied functions,Based on wall-climbing robot techniques.for specific objects.And it works on vertical Glass-wall,where is dangerous for human beings.It is a robot could conquer the gravity effect and carry cleaning equipments,facing to glass-wall surface beautifying service of modern high-rise buildings.Firstly, the whole frame of the glass wall cleaning robot is introduced, and theLevel-based planning is discussed also. Based on this, the designing and analyzing Of the structure of the robot are described in details,the main parameters designing and structure designing of the key parts are also processed by using some of correlative calculating theories and soft .Then,mission-oriented and local motion planning are discussed.At last,three-dimensional model of the robot are established by Means of UG soft.Key words:Glass-wallcleaning robotvacuum adsorption systemIII目 录摘 要 .IABSTRACT.II第 1 章 绪 论.51.1 引言.51.2 课题研究的目的及意义.51.3 国内外研究现状及发展趋势.61.3.1 国外发展概况.61.3.3 翻转机发展趋势.101.4 本文研究的目标、研究内容和研究方法.101.4.1 研究目标.101.4.2 研究内容和研究方法.11第 2 章 总体方案设计.122.1 翻转机分类.122.2 翻转机构的确定.122.3 组成与工作原理.132.4 夹紧和限位装置方案的选择.142.5 总体控制系统设计.15IV第 3 章 翻转机构设计.163.1 电动机及减速器选择.163.2 同步带轮选型计算.173.3 同步带胀紧装置的选择.193.3.1 张紧力.203.3.2 压轴力.203.3.3 同步带张紧的检测.233.4 传动轴的设计计算.253.4.1 初步确定轴的最小直径.253.4.2 轴的结构设计.253.5 滚动轴承的校核.26第 4 章 气动系统设计.28第 5 章 控制系统的设计.305.1 控制方案的选择.305.2 PLC 选型 .325.3 系统触摸屏.335.4 系统接线图.33结 论.35参考文献.36致 谢.375 1 1 绪论绪论 1.1 引言在现代都市中,高层建筑越来越多,各种各样的摩天大楼成为现代都市中一道亮丽的风景。在建筑业,由于玻璃的采光性好,保温防潮性能好,彩色玻璃实用美观,高层建筑的外壁越来越多地采用玻璃幕墙结构,但是为了保证建筑外观的整洁美丽,时间一长,就需要对壁面进行清洗,以美化市容市貌。许多开放性城市都规定,每年应对高楼清洗若干次。 1.2 研究的目的和意义目前高层建筑玻璃幕墙的清洗方法主要有两种,一种是靠升降平台或吊篮承载清洁工进行玻璃幕墙的清洗,虽简便易行,但劳动强度大,工作效率又低,属于高空极限作业对人身安全及玻璃壁面都有很大的威胁性。另一种是用安装在楼顶的轨道及吊索系统将擦窗机对准窗户进行自动擦洗。这种方式初次投资成本较高(高达数百万元),而且要求在建筑物设计之初就要考虑擦窗系统,因而限制了其使用,因此急需一种能代替人而又有一定灵活性和适用性的自动机器来完成这项工作,而且玻璃幕墙一般面积较大,大多处于几十米甚至上百米的高处,且周围无可攀援的支架,这就使得玻璃幕墙的清洗成为一项繁重、危险、耗资的工作。如果用人去清洗,不仅花费高,而且安全难以保证。特别是目前一些国家和地区已经通过立法对包括擦窗作业在内的人工高空攀爬进行了限制,人们不得不寻找其它解决办法。 高层建筑清洗机器人正是在这种背景下应运而生。它的出现将极大降低高层建筑的清洗成本,改善工人的劳动环境,提高生产效率,也必将极大地推动清洗业的发展,带来相当的社会效益、经济效益。因此,国内外多家研究机构都在积极开展此项研究工作。 1.3 国内外研究现状国内外研究现状6通过按吸附方式的不同,可将玻璃幕墙清洁机器人的吸附机构分为三种,即磁吸附、真空吸附和推力吸附3。其中磁吸附按提供吸附力材质的不同,可分为电磁体和永磁体两种。对壁面的平整程度都没有要求,不仅机器人的有效载荷远胜于真空吸附和推力吸附,而且在作业过程中不存在真空漏气的问题,但要求机器人工作时所吸附的壁面必须是导磁材料,这一点使得采用磁吸附作为吸附方式的机器人的应用环境收到严重地限制;真空吸附按吸盘个数又分为单吸盘和多吸盘两种,真空吸附虽然不受壁面材料限制但对吸盘的密封性能却要求较高,在附着面不平整时吸盘容易漏气,使密封性能下降从而造成吸附力下降,使得机器人的实际承载能力降低;推力吸附方式整合了前两者的优点,有一定的吸附力而且对壁面的平整程度没有要求,但是由于要求风机排风量很大所以整体重量会很重。各种方式优缺点如下表 1.14。表表 1.11.1 玻璃清洁机器人吸附方式的比较玻璃清洁机器人吸附方式的比较吸附方式缺点优点永磁吸附移动时需要机器人主体跟吸附表面分离不需要外部施加能量,安全性高磁吸附电磁吸附要外部施加能量,电磁铁重量大,机器人笨重容易实现机器人主体与壁面的离合,吸附力强单吸盘吸附吸盘的泄露量一旦超过极限,本体将失去吸附能力允许有一定的泄露量,允许壁面有凹凸真空吸附多吸盘吸附对壁面要求高,壁面有凹凸或裂缝时将会有泄露吸盘尺寸小,机器人更加灵活7推力吸附风机噪声大啊,机器人重量大,体积大对壁面适应性强,不存在泄露问题图 1.1 是清华大学采用电磁体吸附方式研制的用于储罐表面检测的磁吸附机器人TH-Climber-I 5,行走方式为履带驱动机器人在储罐表面行走检测。实验表明,它具有较高的运动速率、具有很好稳定性和定位精度,其运动速率最大可达 8m/min ,可以跨越 10mm 以上的焊缝和表面凸起障碍,角度误差也可控制在 0.2 度以内。图 1.2 为加拿大戴尔豪斯大学和香港中文大学研制的壁面移动机器人6,它的吸附装置使用永磁体吸附履带。使用永磁体方式使机器人吸附于储罐表面,然后电机驱动履带带动机器人在储罐表面移动检测。 图图 1.11.1 清华大学磁吸附清华大学磁吸附 图图 1.21.2 戴尔豪斯大学和香港中文戴尔豪斯大学和香港中文大学的大学的机器人机器人 TH-Climber-ITH-Climber-I 永磁体吸附履带壁面移动机器人永磁体吸附履带壁面移动机器人77图 1.3 是年哈尔滨工业大学研制的 CLR-II 型壁面清洗壁面移动机器人8,它的吸附机构采用的就是单吸盘真空吸附,清洗装置悬挂于机器人下方。机器人有效载荷为5kg,爬行速率最快为 10m/min,每次爬行高度是最高 100m,操控方式是有线遥控及PLC 线路控制,行走方式采用双轮式无级调速,机器自身携带有高压水枪、旋转刷从而在清洗作业时可实现机器人自主清洗作业。由于它是专为建筑物外表面瓷砖壁面的清洗而设计制造的,所以目前已有成品并投入生产应用。图 1.4 是在 1990-1993 日本东京工业大学间研究设计的 NINJA9,第一代型号为 NINJIA-I,自 1994 年开始,NINJA-II在 NINJIA-I 的基础上不断的改善升级,可用于高楼壁面的检查等。NINJIA-I 和NINJA-II 的主要技术参考是相同,吸附装置也都采用的多吸盘真空吸附。8 图图 1.31.3 哈尔滨工业大学研制的哈尔滨工业大学研制的 CLR-IICLR-II 图图 1.41.4 日本东京工业大学研制的日本东京工业大学研制的 NINJIANINJIA1990 年西亮教授研制的爬壁机器人的吸附装置采用的是推力吸附,如图 1.5 为理论设计图。在吸附原理上它借鉴直升机原理,使用螺旋桨产生的高速气流推动机器人在墙壁表面移动的同时贴合墙壁表面。螺旋桨的轴线与壁面大约成 200夹角,如此高速气流产生的推力在水平方向始终有分力指向壁面,从而实现了机器人的吸附吸附在建筑表面上:在竖直方向也有向上的分力,使机器人可以紧贴壁面移动,且使机器人具有一定的越障能力。掌舵机构控制机器人的移动方向和倾斜角度,由于使用柴油机,所以不需要带电源线,使用起来很方便。图 1.6 为实物图。 图图 1.51.5 螺旋桨式推力吸附壁面螺旋桨式推力吸附壁面 图图 1.61.6 螺旋桨式推力吸附壁面螺旋桨式推力吸附壁面移动机器人理论设计图移动机器人理论设计图 移动机器人实物图移动机器人实物图1.4 本文研究的本文研究的内容和方法内容和方法9目前已有几种真空吸附清洗机器人能够实现自动爬行、供水和擦洗的功能,但它们几乎都存在三个共同的问题:水、电、气分路控制:供水清洗、爬行驱动和真空吸附三个系统相互独立,需要水泵来供给清洗用水,需要气泵来实现抽真空吸附,需要活塞缸或电动机来驱动机器人爬行,增加了机器人的附属设施和制造成本;直行与转弯运动分别驱动:采用两套机构来分别驱动机器人的直行和转弯运动,驱动装置复杂、笨重,需要外接驱动电源,降低了可靠性和安全性;接触式清洗:采用擦布和滚刷组成的复杂机械结构直接磨擦玻璃进行清洗,这种方式容易擦伤高档玻璃的表面保护层,还需要清洁剂,污染环境,更主要的是擦拭所需的下压力正好与机器人的吸附力方向相反,很难保证机器人稳定吸附的同时又有足够的擦拭压力。针对这些问题,我们设计了一种水射流抽气式清洗机器人,其创新性主要表现在三个方面:新原理:利用水射流原理,以水为唯一的动力源实现了吸附、爬行和清洗三种功能,系统更紧
收藏
编号:449201
类型:共享资源
大小:6.86MB
格式:ZIP
上传时间:2022-03-31
50
积分
- 关 键 词:
-
玻璃
清洗
机器人
吸附
机构
设计
三维
sw
cad
图纸
- 资源描述:
-
毕业论文玻璃清洗机器人吸附机构设计系部名称: 专业班级: 学生姓名: 指导教师: 职 称: 二一九年六月The Graduation Design Design of Adsorption Mechanism for Glass Cleaning Robot Candidate: Specialty: Class: Supervisor: Shenyang institute of technology2019-06I摘 要 高楼玻璃幕墙清洗机器人是特种机器人的一个分支。它是基于壁面移动机器人技术,并针对具体的作业对象,具有明确功能的实用机器人,其工作在垂直危险的玻璃壁面,能够克服重力的作用,携带清洗设备,是面向现代高层建筑玻璃外墙表面保洁、清洗服务的极限作业机器人。 论文首先对机器人总体方案进行介绍,提出了分层次规划的体系结构。在此基础上,对机器人总体结构进行了设计分析,并应用有关计算理论和计算软件进行了主要参数设计和关键部件的结构设计,讨论了机器人的作业路径,运动控制规划及吸附机构的设计,最后,应用 UG 三维软件针对所设计的机器人建立了三维实体模型。 关键词:玻璃幕墙清洗;机器人;运动分析IIABSTRACTGlass-wall cleaning robot is one of robot for limited operation,which can walk on Vertical glass-wall with washing devices.It is a robot with specific applied functions,Based on wall-climbing robot techniques.for specific objects.And it works on vertical Glass-wall,where is dangerous for human beings.It is a robot could conquer the gravity effect and carry cleaning equipments,facing to glass-wall surface beautifying service of modern high-rise buildings.Firstly, the whole frame of the glass wall cleaning robot is introduced, and theLevel-based planning is discussed also. Based on this, the designing and analyzing Of the structure of the robot are described in details,the main parameters designing and structure designing of the key parts are also processed by using some of correlative calculating theories and soft .Then,mission-oriented and local motion planning are discussed.At last,three-dimensional model of the robot are established by Means of UG soft.Key words:Glass-wallcleaning robotvacuum adsorption systemIII目 录摘 要 .IABSTRACT.II第 1 章 绪 论.51.1 引言.51.2 课题研究的目的及意义.51.3 国内外研究现状及发展趋势.61.3.1 国外发展概况.61.3.3 翻转机发展趋势.101.4 本文研究的目标、研究内容和研究方法.101.4.1 研究目标.101.4.2 研究内容和研究方法.11第 2 章 总体方案设计.122.1 翻转机分类.122.2 翻转机构的确定.122.3 组成与工作原理.132.4 夹紧和限位装置方案的选择.142.5 总体控制系统设计.15IV第 3 章 翻转机构设计.163.1 电动机及减速器选择.163.2 同步带轮选型计算.173.3 同步带胀紧装置的选择.193.3.1 张紧力.203.3.2 压轴力.203.3.3 同步带张紧的检测.233.4 传动轴的设计计算.253.4.1 初步确定轴的最小直径.253.4.2 轴的结构设计.253.5 滚动轴承的校核.26第 4 章 气动系统设计.28第 5 章 控制系统的设计.305.1 控制方案的选择.305.2 PLC 选型 .325.3 系统触摸屏.335.4 系统接线图.33结 论.35参考文献.36致 谢.375 1 1 绪论绪论 1.1 引言在现代都市中,高层建筑越来越多,各种各样的摩天大楼成为现代都市中一道亮丽的风景。在建筑业,由于玻璃的采光性好,保温防潮性能好,彩色玻璃实用美观,高层建筑的外壁越来越多地采用玻璃幕墙结构,但是为了保证建筑外观的整洁美丽,时间一长,就需要对壁面进行清洗,以美化市容市貌。许多开放性城市都规定,每年应对高楼清洗若干次。 1.2 研究的目的和意义目前高层建筑玻璃幕墙的清洗方法主要有两种,一种是靠升降平台或吊篮承载清洁工进行玻璃幕墙的清洗,虽简便易行,但劳动强度大,工作效率又低,属于高空极限作业对人身安全及玻璃壁面都有很大的威胁性。另一种是用安装在楼顶的轨道及吊索系统将擦窗机对准窗户进行自动擦洗。这种方式初次投资成本较高(高达数百万元),而且要求在建筑物设计之初就要考虑擦窗系统,因而限制了其使用,因此急需一种能代替人而又有一定灵活性和适用性的自动机器来完成这项工作,而且玻璃幕墙一般面积较大,大多处于几十米甚至上百米的高处,且周围无可攀援的支架,这就使得玻璃幕墙的清洗成为一项繁重、危险、耗资的工作。如果用人去清洗,不仅花费高,而且安全难以保证。特别是目前一些国家和地区已经通过立法对包括擦窗作业在内的人工高空攀爬进行了限制,人们不得不寻找其它解决办法。 高层建筑清洗机器人正是在这种背景下应运而生。它的出现将极大降低高层建筑的清洗成本,改善工人的劳动环境,提高生产效率,也必将极大地推动清洗业的发展,带来相当的社会效益、经济效益。因此,国内外多家研究机构都在积极开展此项研究工作。 1.3 国内外研究现状国内外研究现状6通过按吸附方式的不同,可将玻璃幕墙清洁机器人的吸附机构分为三种,即磁吸附、真空吸附和推力吸附3。其中磁吸附按提供吸附力材质的不同,可分为电磁体和永磁体两种。对壁面的平整程度都没有要求,不仅机器人的有效载荷远胜于真空吸附和推力吸附,而且在作业过程中不存在真空漏气的问题,但要求机器人工作时所吸附的壁面必须是导磁材料,这一点使得采用磁吸附作为吸附方式的机器人的应用环境收到严重地限制;真空吸附按吸盘个数又分为单吸盘和多吸盘两种,真空吸附虽然不受壁面材料限制但对吸盘的密封性能却要求较高,在附着面不平整时吸盘容易漏气,使密封性能下降从而造成吸附力下降,使得机器人的实际承载能力降低;推力吸附方式整合了前两者的优点,有一定的吸附力而且对壁面的平整程度没有要求,但是由于要求风机排风量很大所以整体重量会很重。各种方式优缺点如下表 1.14。表表 1.11.1 玻璃清洁机器人吸附方式的比较玻璃清洁机器人吸附方式的比较吸附方式缺点优点永磁吸附移动时需要机器人主体跟吸附表面分离不需要外部施加能量,安全性高磁吸附电磁吸附要外部施加能量,电磁铁重量大,机器人笨重容易实现机器人主体与壁面的离合,吸附力强单吸盘吸附吸盘的泄露量一旦超过极限,本体将失去吸附能力允许有一定的泄露量,允许壁面有凹凸真空吸附多吸盘吸附对壁面要求高,壁面有凹凸或裂缝时将会有泄露吸盘尺寸小,机器人更加灵活7推力吸附风机噪声大啊,机器人重量大,体积大对壁面适应性强,不存在泄露问题图 1.1 是清华大学采用电磁体吸附方式研制的用于储罐表面检测的磁吸附机器人TH-Climber-I 5,行走方式为履带驱动机器人在储罐表面行走检测。实验表明,它具有较高的运动速率、具有很好稳定性和定位精度,其运动速率最大可达 8m/min ,可以跨越 10mm 以上的焊缝和表面凸起障碍,角度误差也可控制在 0.2 度以内。图 1.2 为加拿大戴尔豪斯大学和香港中文大学研制的壁面移动机器人6,它的吸附装置使用永磁体吸附履带。使用永磁体方式使机器人吸附于储罐表面,然后电机驱动履带带动机器人在储罐表面移动检测。 图图 1.11.1 清华大学磁吸附清华大学磁吸附 图图 1.21.2 戴尔豪斯大学和香港中文戴尔豪斯大学和香港中文大学的大学的机器人机器人 TH-Climber-ITH-Climber-I 永磁体吸附履带壁面移动机器人永磁体吸附履带壁面移动机器人77图 1.3 是年哈尔滨工业大学研制的 CLR-II 型壁面清洗壁面移动机器人8,它的吸附机构采用的就是单吸盘真空吸附,清洗装置悬挂于机器人下方。机器人有效载荷为5kg,爬行速率最快为 10m/min,每次爬行高度是最高 100m,操控方式是有线遥控及PLC 线路控制,行走方式采用双轮式无级调速,机器自身携带有高压水枪、旋转刷从而在清洗作业时可实现机器人自主清洗作业。由于它是专为建筑物外表面瓷砖壁面的清洗而设计制造的,所以目前已有成品并投入生产应用。图 1.4 是在 1990-1993 日本东京工业大学间研究设计的 NINJA9,第一代型号为 NINJIA-I,自 1994 年开始,NINJA-II在 NINJIA-I 的基础上不断的改善升级,可用于高楼壁面的检查等。NINJIA-I 和NINJA-II 的主要技术参考是相同,吸附装置也都采用的多吸盘真空吸附。8 图图 1.31.3 哈尔滨工业大学研制的哈尔滨工业大学研制的 CLR-IICLR-II 图图 1.41.4 日本东京工业大学研制的日本东京工业大学研制的 NINJIANINJIA1990 年西亮教授研制的爬壁机器人的吸附装置采用的是推力吸附,如图 1.5 为理论设计图。在吸附原理上它借鉴直升机原理,使用螺旋桨产生的高速气流推动机器人在墙壁表面移动的同时贴合墙壁表面。螺旋桨的轴线与壁面大约成 200夹角,如此高速气流产生的推力在水平方向始终有分力指向壁面,从而实现了机器人的吸附吸附在建筑表面上:在竖直方向也有向上的分力,使机器人可以紧贴壁面移动,且使机器人具有一定的越障能力。掌舵机构控制机器人的移动方向和倾斜角度,由于使用柴油机,所以不需要带电源线,使用起来很方便。图 1.6 为实物图。 图图 1.51.5 螺旋桨式推力吸附壁面螺旋桨式推力吸附壁面 图图 1.61.6 螺旋桨式推力吸附壁面螺旋桨式推力吸附壁面移动机器人理论设计图移动机器人理论设计图 移动机器人实物图移动机器人实物图1.4 本文研究的本文研究的内容和方法内容和方法9目前已有几种真空吸附清洗机器人能够实现自动爬行、供水和擦洗的功能,但它们几乎都存在三个共同的问题:水、电、气分路控制:供水清洗、爬行驱动和真空吸附三个系统相互独立,需要水泵来供给清洗用水,需要气泵来实现抽真空吸附,需要活塞缸或电动机来驱动机器人爬行,增加了机器人的附属设施和制造成本;直行与转弯运动分别驱动:采用两套机构来分别驱动机器人的直行和转弯运动,驱动装置复杂、笨重,需要外接驱动电源,降低了可靠性和安全性;接触式清洗:采用擦布和滚刷组成的复杂机械结构直接磨擦玻璃进行清洗,这种方式容易擦伤高档玻璃的表面保护层,还需要清洁剂,污染环境,更主要的是擦拭所需的下压力正好与机器人的吸附力方向相反,很难保证机器人稳定吸附的同时又有足够的擦拭压力。针对这些问题,我们设计了一种水射流抽气式清洗机器人,其创新性主要表现在三个方面:新原理:利用水射流原理,以水为唯一的动力源实现了吸附、爬行和清洗三种功能,系统更紧
展开阅读全文
知学网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。