《2.2 基本不等式》优秀教案教学设计
《《2.2 基本不等式》优秀教案教学设计》由会员分享,可在线阅读,更多相关《《2.2 基本不等式》优秀教案教学设计(6页珍藏版)》请在知学网上搜索。
1、2.2基本不等式教材分析:“基本不等式” 是必修1的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质. 教学目标【知识与技能】1.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“”取等号的条件是:当且仅当这两个数相等;2.掌握基本不等式;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题【过程与方法】通过实例
2、探究抽象基本不等式;【情感、态度与价值观】通过本节的学习,体会数学来源于生活,提高学习数学的兴趣.教学重难点【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式的证明过程;【教学难点】1.基本不等式等号成立条件;2.利用基本不等式求最大值、最小值.教学过程1.课题导入前面我们利用完全平方公式得出了一类重要不等式:一般地,a,bR,有 a2+b22ab,当且仅当a=b时,等号成立特别地,如果a>0,b>0,我们用a,b分别代替上式中的a,b,可得aba+b2 当且仅当a=b时,等号成立.通常称不等式(1)为基本不等式(basic inequality).其中,a+b2叫做
3、正数a,b的算术平均数,ab叫做正数a,b的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.思考: 上面通过考察a2+b2=2ab的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下.2.讲授新课1)类比弦图几何图形的面积关系认识基本不等式特别的,如果a0,b0,我们用分别代替a、b ,可得,通常我们把上式写作: 2)从不等式的性质推导基本不等式用分析法证明:要证 (1)只要证 a+b (2)要证(2),只要证 a+b- 0 (3)要证(3),只要证 ( - )20 (4)显然,(4)是成立的.当且仅当a=b时,(4)中的等号成立.
4、探究1: 在右图中,AB是圆的直径,点C是AB上的一点,AC=a,BC=b.过点C作垂直于AB的弦DE,连接AD、BD.你能利用这个图形得出基本不等式的几何解释吗?易证tAD tDB,那么D2A·B即D.这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即ab时,等号成立.因此:基本不等式几何意义是“半径不小于半弦”评述:1.如果把看作是正数a、b的等差中项,看作是正数a、b的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2. 在数学中,我们称为a、b的算术平均数,称为a、b的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它
5、们的几何平均数.【设计意图】老师引导,学生自主探究得到结论并证明,锻炼了学生的自主研究能力和研究问题的逻辑分析能力.例1 已知x>0,求x1x的最小值.分析:求x1x的最小值,就是要求一个y0(=x01x),使x>0,都有x1xy.观察x+1x,发现x1x=1.联系基本不等式,可以利用正数x和1x的算术平均数与几何平均数的关系得到y0=2.解:因为x>0,所以x1x2x1x=2当且仅当x= 1x,即x2=1,x=1时,等号成立,因此所求的最小值为2.在本题的解答中,我们不仅明确了x>0,有x1x2,而且给出了“当且仅当x=1x,即=1,x=1时,等号成立”,这是为了说明
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 《2.2 基本不等式》优秀教案教学设计
